Implementasi Metode Convolutional Neural Network Untuk Klasifikasi Penyakit Tanaman Kentang Dengan Arsitektur Densenet

  • Yuzril Nur Maulana Universitas Singaperbangsa Karawang, Indonesia
  • Chaerur Rozikin Universitas Singaperbangsa Karawang, Indonesia
  • Apriade Voutama Universitas Singaperbangsa Karawang, Indonesia

Abstract

Automated detection of plant diseases, particularly in crops like potatoes, is essential for maintaining agricultural productivity. The use of convolutional neural networks (CNNs), especially employing architectures like DenseNet, offers promising avenues for accurate disease classification. Your study's exploration of three different optimizers – Adam, SGD, and RMSprop – provides insights into their effectiveness in training CNN models for potato disease classification. The Adam optimizer stands out with its exceptionally high average accuracy of 97%, alongside impressive precision, recall, and F1-score metrics, all reaching 98%. This indicates its robustness in optimizing models for superior results. On the other hand, the SGD optimizer, although slightly less accurate at 83%, still performs commendably, considering its simplicity and widespread usage. Its precision, recall, and F1-score metrics around 82% underscore its reliability in disease classification tasks. Additionally, the RMSprop optimizer, while not as effective as Adam, demonstrates good performance with an accuracy of around 94% and stable precision, recall, and F1-score metrics, each approximately 94%. Overall, the findings suggest that all three optimizers can effectively train CNN models for potato disease classification. However, the Adam optimizer tends to yield the best results in this context, emphasizing its potential for optimizing models in similar agricultural applications. This comprehensive analysis provides valuable insights for researchers and practitioners aiming to deploy automated disease detection systems in potato cultivation and potentially other agricultural domains.

References

Ahmad, U. 2005. Pengolahan Citra Digitak dan Teknik Pemrogramannya. Yogyakarta: Graha Ilmu.
Anggiratih, E., Siswanti, S., Octaviani, S. K., & Arumsari. 2021. "Klasifikasi Penyakit Padi Menggunakan Model Deep Learning Efficient B3 dengan Transfer Learning." Jurnal Ilmiah Sinus.
Arofiqoh, N., Erlyana, & Harintaka. 2018. "Implementasi Metode Convolutional Neural Network Untuk Klasifikasi Tanaman Pada Citra Resolusi Tinggi ." Geomatika.
Chen, J., Zhang, D., Sun, Y., & Nanehkaran, Y. A. 2020. "Using Deep Learning for Image Based Plant Disease Indentification." Computers and Electronics in Agriculture 173.
Derry Alamsyah, & Dicky Pratama. 2020. "Implementasi Convolutional Neural Network (CNN) untuk Klasifikasi Ekspresi Citra Wajah pada FER-2013 Dataset." Jurnal Teknologi Informasi 350-55.
Fajjriyah, N. 2017. Kiat Suskes Budidaya Bawang Merah. Yigyakarta: Bio Genesis.
FAO. 2023. Food adn Agriculture Organization of the United Nations. https://www.fao.org/home/en.
Felix, & Faisal, S. 2019. "Implementasi CNN dan SVM untuk Identifikasi Penyakit Tomat via Daun." Jurnal SIFO Mikrosil.
Fry, W.E. 2008. "Phytophtora infestans : The Plant (and R gene) destroyer." Molecular Plant Pathology 385-402.
Goodfellow, I., Bengio, Y., & Courvile. 2016. Deep Learning. Cambridge: MIT Press.
Hidayat, A. 2019. "Detection of Disease On Corn Plants Using Convolutional Neural Network Methods." Journal of a Science and Information.
Hidayat. W. F., & Taufik. 2022. "Klasifikasi Penyakit Daun Kentang Menggunakan Model Logistic Regresion." Indonesian Journal on Software Engineering 173-79.
HUMAS. 2020. Direktorat Jenderal Hortikultura Kementrian Pertanian. April. http://hortikultura.pertanian.go.id/?p=4657#:~:text=Direktur%20Jenderal%20Hortikultura%20Kementan%2C%20Prihasto,terutama%20Brebes%2 C%20Demak%20dan%20Pati.
Istina, I. N. 2016. "Peningkatan Produksi Kentang Melalui Pemupukan NPK." Jurnal Agro Jurnal Agro.
Jimmy, P. 2018. "Implementasi Deep Learning Menggunakan Convolutional Neural Network ."
Khan, S., H.Rahmani, S. S., & D.M, B. 2018. A Guide to Convolutional Neural Network for Computer VIsion. New York: Morgan & Claypool Publisher.
Kim, P. 2017. MATLAB Deep Learning : with Machine Learning, Neural Networks and Artificial Intelligence . New York: Apress.
Kusumanungrum, T.F. 2018. "Implementasi Convolutional Neural Network (CNN) Untuk Klasifikasi Jamur Konsumsi Di Indonesia Menggunakan Keras."
Purnawati, A., Nugroho, W., & Putri, D. 2020. "Deteksi Penyakit Daun pada Tanaman Padi Menggunakan Algoritma Decision Tree Random Forest Nave Bayes dan KNN." Jurnal Nasional Informatika dan Teknologi Jaringan.
Rakhmawati, P. U. 2018. "Klasifikasi Penyakit Daun Kentang Berdasarkan Fitur Tekstur dan Fitur Warna Menggunakan Support Vector Machine." Seminar Nasional Teknologi dan Rekayasa (SENTRA).
Ramadhani, Rima Dias. 2021. "Optimasi Akurasi Metode Convolutional Neural Network untuk Identifikasi Jenis Sampah." Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi).
Robinsin, A,. 2017. "Late Blight in Potato." ResearchGate. www.ag.ndsu.ed.
Rokhim, A., Sari, Y. A., & Tibyani. 2019. "Convolutional Neural Network untuk Pengklasifikasian Citra Makanan Tradisional ." Jurnal Pengembangan Teknologi Informatika dan Ilmu Komputer.
Sari, I. P. 2016. "Perancangan dan Simulasi Deteksi Penyakit Tanaman Jagung Berbasi Pengolahan Citra Digital Menggunakan Metode Color Moment dan GLCM." Seminar Nasional Inovasi dan Aplikasi Teknologi Di Industri (SENIATI) 215-220.
Utami, P. B. 2021. Klasifikasi Gambar dengan Deep Learning Menggunakan Metode Convolutional Neural Network. https;//dspace.uii.ac.id/handle/123456789/8081.
Wahyu Nugraha, A. S. 2022. "Hyperparameter Tuning pada algortima Klasifikasi dengan Grid Search ." Jurnal Sistem Informasi 391-401.
Wicaksono, G. 2020. "Aplikasi Pendeteksi Penyakit pada Daun Tanaman Apel Dengan Metode Convolutional Neural Network." Journal of Information Technology and Computer Science.
Wijaya, A. Y., & Soelaiman, R. 2016. "Klasifikasi Citra Menggunakan Convolutioal Neural Network (CNN) pada Caltech101." 5.
Wikarta, A., Pramono, A. S., & Ariatedja, J. B. 2020. "Analisa Bermacam Optimizer Pada Convolutional Neural Network Untuk Deteksi Pemakaian Masker." Seminar Nasional Informatika 2020 (SEMNASIF 2020) 69-72.
Winarto, Eveline Gabriel, Rahmayati, & Amin Lawi. 2021. "Implementasi Arsitektur Inception Resnet-V2 untuk Klasifikasi Kualitas Biji Kakao." KONIK 132-37.
Wonohadidjojo, Daniel Martomanggolo. 2021. "Perbandingan Convolutional Neural Network pada Transfer Learning Method untuk Mengklasifikasikan Sel Darah Putih." Jurnal Teknik Informatika.
Published
2024-09-27
How to Cite
Maulana, Y., Rozikin, C., & Voutama, A. (2024). Implementasi Metode Convolutional Neural Network Untuk Klasifikasi Penyakit Tanaman Kentang Dengan Arsitektur Densenet. JURNAL LENTERA : Kajian Keagamaan, Keilmuan Dan Teknologi, 23(3), 301-309. https://doi.org/10.29138/lentera.v23i3.1455